The Use of Geographic Information Systems in Climatology and Meteorology, COST 719

Objectives

The COST Action 719 started in 2001 with 18 European countries participating. Presently 20 countries have signed the Memorandum of Understanding. The Action has several objectives including establishing interfaces between GIS and meteorological data in close co-operation with the GIS industry; assessing the availability, contents and accessibility of meteorological and climatological data sets; encouraging and fostering European co-operation in the development of operational applications of GIS in meteorology and climate research and finally strengthening the links between the National Meteorological Services, the research community as well as the GIS industry.

Working Groups

The tasks are carried out within three working groups.

Working Group 1 - DATA ACCESS AND DATA AVAILABILITY is focusing on putting pointers to existing and potential GIS data sets and on the conversion and standardisation of climatological, meteorological and other relevant environmental data in view of data exchange. In particular, the Action will keep pace with the advancing state-of-the-art of applicable GIS tools (software/hardware) and developments in progress; document the availability,

contents and accessibility of climatological, meteorological and environmental data sets, including metadata, and relevant future developments therein. In its responsibilities are also: to establish standardised interfaces between GIS systems and climatological and meteorological databases, when possible in close cooperation with GIS system providers and to define and/or develop filter tools as appropriate in order to improve the exchange of data between research institutes, NMSs and the rest of the user community.

Working Group 2 - SPATIAL INTERPOLATION is responsible for establishing an inventory of interpolation functionality already present in GIS and statistical software and the recognition of gaps. In particular to study the potential and limitations of existing GIS (interpolation) functionality for spatialisation of meteorological and climate data; compare with other spatialisation algorithms and set up recommendations/specifications for future GIS tools for spatialisation, suitable for meteorological and climate applications, and take these up with industry.

Working Group 3 - GIS APPLICATIONS is developing standardised GIS applications aimed at climatological, meteorological and relevant environmental users. In particular the Action has established an inventory of the present use of GIS applications in meteorology and climate research. Also the perceived potential, as well as the limitations for future development, will be considered, taking into account the requirements of interested parties. The identification of a set of useful applications of GIS in the fields of meteorology and climate research, e.g. with respect to visualization and mapping is being examined. Furthermore WG3 will develop the specifications for such applications; encourage joint development, for example with ECSN, of such applications to be shared between the participants of the Action.

Demo Projects

The applications which have been already adopted are mainly focusing on three parameters, i.e. precipitation, temperature and energy balance for which three so-called Demo projects were formulated.

Demo A – “Mapping the Precipitation Using Combined Information from Satellite Data, Mesoscale Forecast Models and Ground Measurements (Synoptic and Climatologic)” is focused on precipitation. This demo project has been started in the Satellite Research Department in IMWM Poland as a result of experience gained during the research on application of satellite microwave images from NOAA KLM series. The satellite data together with standard synoptic and climatic measurements as well as radar and NWP analysis are merged together for precipitation analysis. The system allows displaying the rain field forecasted by the numerical weather prediction model and the precipitation observed with other ancillary information through a unique front-end software interface. Figure 1. presents the workflow of the project.
The Use Of Geographic Information Systems in Climatology And Meteorology

Demo B – “Spatial interpolation of temperature in Alpine Regions” is setting its focus on Temperature measurements. Since this demo project has only been started within this Cost Action and is therefore not based on a currently running project within one of the participating institutes it has only got started so there cannot be presented any results yet. It was the aim to use one set of data to start out with which would be accessible by all the group members. Therefore it was proposed to apply the data set of MAP (Mesoscale Alpine Project), which is accessible on the Internet. The proposed structure of the project is shown on Fig. 2.

Demo C - “Prediction of Road Surface Temperature” - COST 719 Working Group 3 are participating in a trial to test the application of new road ice prediction software across the EU. The software "IceMiser" was developed at the University of Birmingham, UK and predicts Road Surface Temperatures (RST) across the road network. Coded in Visual Basic as an extension of ArcGIS, the model combines Geographical GIS data with forecast Meteorological data to produce a 24-hour forecast of RST.

Several GIS layers are required (Fig. 3). These include raster data in the form of a DEM, Cold Air Pooling algorithm, Aspect, Slope and Landuse and Line data showing the road network and the Sky-View Factor as point data (calculated from fish eye images: Fig 3. lower right)

The GIS data is then combined with meteorological forecast data and entered directly into the model. The result is a dynamic forecast of RST around the road network at temporal and spatial resolutions of 20 minutes and 20 metres respectively. These are displayed immediately in ArcGIS, but can also be viewed in ArcExplorer.

Successful trials have already been carried out in the UK and it is hoped that the model can be tested, refined and ultimately used across the EU. An initial trial in Slovenia was undertaken in Slovenia in December 2002 (below).

Additionally some tasks such as the development of a visualisation system for climate data sets for Internet application are under preparation. For the demonstration projects, an Internet Map Server will operate in FMA web sites. In particular we will use a technologies developed to serve GIS data on the Internet, in a form of a map. The WIM (Web Internet Map server) used is SISTERIMS (www.sister.it) that allows the display and query the maps with the usual browser without any plug-in installed on the client PC. The system uses the same of ARC/INFO software as data format (shape file, coverage, BIL, BSQ, ECW, IMG, TIFF etc).
Fig. 1 Proposed workflow within the Demo A project
The Use Of Geographic Information Systems in Climatology And Meteorology . . .

Fig. 2 Proposed workflow within the Demo B project
Expected Benefits

There are several main expected benefits of the international co-operation within COST 719 and that include better and more cost-effective production of state-of-the-art meteorological and climatological information, improvement of the cooperation between European countries in the application of GIS in the field of meteorology, climatology and environmental sciences and better trained personnel within the operational and scientific divisions of NMSs.
Bibliography

The COST Action 719 has started in 2001 and presently 20 European countries are participating. There are manifold objectives of the Action, however, the main aspects such as establishing interfaces between GIS and meteorological data, assessing the availability, contents and accessibility of meteorological and climatological data sets, encouraging and fostering European co-operation should be mentioned.

The tasks are carried out within three working groups concentrated on tasks such as data access and availability, methods of spatial interpolation and developing recommendations for standardised GIS applications.

The applications which have been already adopted are mainly focusing on three parameters, i.e. precipitation, temperature and energy balance for which three so-called Demo projects have been formulated.

It is expected to achieve better and more cost-effective production of state of the art; meteorological and climatological information, improvement of the co-operation between European countries in the application of GIS in the field of meteorology, climatology and environmental sciences and better trained personnel within the operational and scientific divisions of NMSs.

Additionally some tasks such as the development of a visualisation system for climate data sets for Internet application are under preparation. The paper provides the information concerning the work progress on demo projects made within COST 719.

Keywords: Geographical Information Systems, meteorology, climatology, COST, temperature, precipitation, energy balance

Izabela Dyras, Hartwig Dobesch, Estelle Grueter, Antonio Perdigao, Ole E. Tveito, John E. Thornes, Frans van der Wel, Lorenzo Bottai

The Use of Geographic Information Systems in Climatology and Meteorology, COST 719

Summary

The COST Action 719 has started in 2001 and presently 20 European countries are participating. There are manifold objectives of the Action, however, the main aspects such as establishing interfaces between GIS and meteorological data, assessing the availability, contents and accessibility of meteorological and climatological data sets, encouraging and fostering European co-operation should be mentioned.

The tasks are carried out within three working groups concentrated on tasks such as data access and availability, methods of spatial interpolation and developing recommendations for standardised GIS applications.

The applications which have been already adopted are mainly focusing on three parameters, i.e. precipitation, temperature and energy balance for which three so-called Demo projects have been formulated.

It is expected to achieve better and more cost-effective production of state of the art; meteorological and climatological information, improvement of the co-operation between European countries in the application of GIS in the field of meteorology, climatology and environmental sciences and better trained personnel within the operational and scientific divisions of NMSs.

Additionally some tasks such as the development of a visualisation system for climate data sets for Internet application are under preparation. The paper provides the information concerning the work progress on demo projects made within COST 719.

Keywords: Geographical Information Systems, meteorology, climatology, COST, temperature, precipitation, energy balance

Izabela Dyras, Hartwig Dobesch, Estelle Grueter, Antonio Perdigao, Ole E. Tveito, John E. Thornes, Frans van der Wel, Lorenzo Bottai

Zastosowanie Geograficznych Systemów Informacyjnych w Klimatologii i Meteorologii, COST 719

Streszczenie

Akcja COST 719 rozpoczęła się w 2001 roku i obecnie zrzesza 20 krajów europejskich. Na szczególną uwagę zasługują zadania Akcji takie jak: Określenie
The Use Of Geographic Information Systems in Climatology And Meteorology...